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Superionic Conductors 

W. Dieterich 1 

The so-called superionic conductors represent a class of solid materials showing 
an unusually high ionic conductivity. Their structure is characterized by strong 
disorder in the sublattice of conducting ions. We shall describe the dynamic 
properties of the partially disordered state on the basis of two classes of 
theoretical models. For stochastic lattice gases we discuss the behavior of 
various time-correlation functions relevant for inelastic neutron- and light-scat- 
tering experiments and for tracer-diffusion measurements. In addition we study 
a system of interacting Brownian particles in the presence of a periodic potential 
as a model for optimized (AgI-type) ionic conductors. A mean-field theory is 
developed which implies a relationship between the conductivity and structural 
properties. 

KEY WORDS: Superionic conductors; stochastic lattice gas; Brownian 
motion. 

1. I N T R O D U C T I O N  

The so-called superionic conductors form a particular class of ionic solids 
characterized by ionic conductivities of an order of magnitude as usually 
found for molten salts. (1'2) This phenomenon of fast ionic transport in 
solids has been observed in a variety of materials with different kinds of 
structure. Well-known examples are the AgI-type materials, e.g., the Ag § 
conductors AgI, Ag2S, Ag3SI, or the Cu § conductors CuI, CuBr, etc., 
which have been studied extensively in the past. Another interesting group 
of substances includes anionic conductors like CaF2 or PbF 2. Examples, 
where the conduction process is confined to a lower dimensionality are the 
//-alumina (d= 2) or K-hollandite (d= 1). 
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Fig. 1. Schematic behavior of the ionic conductivity ~r as a function of temperature T for a 
'normal' ionic material (a) and an AgI-type superionic conductor (b). Tm denotes the melting 
temperature and Tcr~t the critical temperature for sublattice disordering. 

In Fig. 1 the conductivity of AgI-type compounds is shown 
schematically as a function of temperature. At low temperatures the 
behavior is similar to "normal" ionic solids, whose conductivity is due to a 
small concentration of thermally generated mobile defects. In the tem- 
perature range between a certain critical temperature Tc and the melting 
point T,, a highly conducting phase exists which is characterized by a high 
degree of disorder in the system of conducting ions and crystalline order in 
the counterion system. Detailed information on the structure of this phase 
has become available both from experiments (3) and from molecular 
dynamics studies. (4) For example, in AgI or Ag2S the density distribution 
pAg(r) of silverions reflects a network of paths connecting the tetrahedral 
interstitial sites in the bcc-lattiCe frame. (3) The Ag-Ag pair correlation 
function averaged over orientation shows liquidlike features with a 
correlation hole such that the occupation of first and second neighbor sites 
is excluded. (5) This shows that we are dealing with a highly correlated 
system and that the effect of interparticle interactions should play an 
important role in the diffusion process. 

We shall give here a brief account of simple theoretical concepts which 
are useful for understanding the dynamic behavior of fast ionic 
conductors. (6) The motion of ions will be treated as a stochastic motion in 
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a medium with a periodic structure. First we consider nondilute lattice gas 
models and review some of their main transport properties. Models of this 
type apply to the rather general situation of many-particle hopping 
encountered also in hydrogen-metal systems/v) chemisorbed submonolayer 
films, (8) or intercalation compounds. (9) 

Secondly, noting the fact that in the equilibrium state of AgI-type 
compounds the mobile ions are considerably delocalized along the diffusion 
paths, we may regard the ions as a "fluid" of interacting Brownian particles 
moving in the periodic lattice potential. For this model we derive a non- 
linear mean-field equation which gives an interrelation between the con- 
ductivity and structural properties. Our approach should provide a rather 
general description of the collective properties of ionic conductors. 

2. STOCHASTIC LATTICE GAS 

2.1. Master Equation 

For a lattice of equivalent sites I we introduce occupation numbers nt 
which are zero or unity depending on whether the site 1 is vacant or 
occupied. By c = (nt )  we denote the fraction of occupied sites. The con- 
figurations n = {n~} of the system are allowed to change in time via con- 
secutive particle hops from a site I to a nearest-neighb0r site 1+ & We 
describe the hopping process by a master equation of the form 

dp(n, 
t ) = l ~  [w,.,+ n(n')p(n', t )-wtd+8(n)p(n,  t)] (2.1) 

dt 2 ~.n 

for the probability p(n, t) to find the configuration n at time t. n' denotes 
the configuration which results from n by the interchange of occupations n t 
and nt+ ~. w/.t+~=wt+&t is the corresponding transition rate, which is 
assumed to satisfy detailed balance, 

wtj+ ~(n) e-~")  = Wt.l+ ~(n') e -~"~"') (2.2) 

with fl= (kBT) -~. The lattice gas Hamiltonian H(n) is given by 

1 
H(n) = ~ 2 V,_ rn,nr (2.3) 

/ ,r  

V~_ r denotes the pair interaction. Its form depends on the actual system 
considered. For superionic conductors the Coulomb interaction is most 
important, Vt_l ,=e2/l l - l ' l ,  whereas in hydrogen-metal systems the 
dominant interaction between protons at large distances is the elastic 
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interaction. Generally, for a lattice gas model to apply, typical hopping 
rates must be much smaller than the frequencies of vibrational degrees of 
freedom, which are not taken into account so far. In the following we dis- 
cuss various dynamic correlation functions at equilibrium, which are 
relevant for inelastic neutron scattering, light scattering, or transport 
measurements. 

2.2. " Ideal" Lattice Gas 

Let us begin our discussion with the simplest case of an "ideal" lattice 
gas, where Vt_ r - -0 .  This case already bears some interesting dynamics 
because in our general formulation double occupancy of sites is excluded, 
which amounts to a hard-core repulsion between the particles. 

The transition rates are taken to be 

= n ,  + (2.4) 

with some rate constant ct. Physically one may interpret a as the escape 
rate for the lattice potential wells. A thermally activated behavior may be 
assumed, ct ocexp(-flVo), where Vo is the barrier between two sites. 

Owing to the form (2.4), which describes the blocking of occupied 
sites, the particle hops are not purely random. Nevertheless, certain collec- 
tive propert ies  can be worked out exactly. 

Consider as a first example the coherent dynamic structure factor 
which determines the cross section for inelastic neutron scattering. It is 
defined in terms of the dynamic correlation function for density fluc- 
tuations 

by 

n(q) -= ~ ( n t -  c) e -iqt (2.5) 
1 

1 I+, ~ dt 
Sr co) = ~ /  -oo ~ e 'Ot(n(q '  t) n ( - q ,  0))  (2.6) 

N is the total number of particles. To evaluate (2.6) one has to solve the 
equations of motion for the averaged occupation numbers n~(t) and then 
perform an equilibrium average over the initial configurations. From the 
master equation one can readily show that 

dnt(t)  = ~ ~ In,+ 8(1 - nt) - n,(1 - n,+ ~)](t) (2.7) 
dt 
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The bilinear terms in (2.7), which come from site blocking, obviously can- 
cel. Therefore we are left with a linear set of rate equations which are iden- 
tical with the independent particle case. This leads to the well-known 
quasielastic spectrum 

1 - c ~ ( q )  
S~oh(q, co)= - -  (2.8) co 2 + 72(q) 

with a half-width 
7(q) = ~ ~ (1 -- e iq~) (2.9) 

The collective diffusion constant, determined by 7(q-~0)~Dco~q 2, is 
therefore simply given by the diffusion constant Do for infinite dilution. 

Next we calculate the current in the presence of an external static bias 
field F. The rates for forward or backward jumps are assumed to be a+ = 
~ exp (+ f iaF /2 ) ,  where a is the lattice constant. From this the average 
current is found to be 

( j )  = 2~c(1 - c) s inh(~aF/2) (2.10) 

which shows particle-hole symmetry. We remark that the conductivity a = 
( j ) / F  obtained in the linear response regime F--* 0 is consistent with the 
Nernst-Einstein relation 

= p~D~oH S(q ~ O) (2.11 ) 

p is the average density and S(q)= 1 -  c the static structure factor. The 
dynamic conductivity is simply constant, a(o~)= a(0). This, however, is no 
longer true for lattices with inequivalent sitesJ 1~ 

As a further solvable case we consider the correlation function of the 
density of pairs with relative distance !, 

At(q) = ~ nl~ nll+ te - iqll (2.12) 
II 

1 ~ + ~  dt 
C,,r(q, co) ---N3_ ~ ~ e i~ ' (A ' (q '  t) At(--  q, 0))  (2.13) 

It turns out that in the equation of motion for the pairs the three-particle 
contributions cancel, in analogy to the cancellation of two-particle terms in 
(2.7). The resulting system of equations for the quantities At(q, t) with 
arbitrary ! can be solved by a defect matrix method. (11) 

Although the model used so far is highly idealized, it does allow us to 
make some comparison with experiments. The solution for (2.13), for 
example, can be applied to the inelastic scattering of light by the superionic 
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conductor CuI. (12) The observed depolarized component Idepo](0)) can be 
understood in terms of a pair mechanism, where each nearest-neighbor pair 
n~nt+n gives rise to a certain anisotropic polarizability c~(g). One finds 
Idepol(C0) OC Cl,(co ) --C• where the functions CI, and C• are given by 
(2.13) with q=0,  setting l = l ' = ~  or i = ~  11 '=~ ' ,  respectively. 
Explicitly, (n) 

1 [ c (1  - c ) ]  2 Re  f ( 0 ) )  (2 .14 )  
C,i(co ) - C •  = ~ 1 - 2 ~ f ( ( o )  

f(co) denotes a lattice Green's function 

d3q cos aqx(cos a q y  - -  Cos aqz) 
f(co) 2a 3 (2.15) 

J (2re) 3 to) + 2~(q) 

where 7(q) is given by (2.9). The spectra obtained (13) are shown in Fig. 2. 
Taking the jump frequency ~ from conductivity data, the calculated half- 
width for the depolarized spectrum is in accord with experiment. The 
polarized scattering component Ipo~(Og) has a contribution proportional to 
C,(0)) + 2C• Note the corn-dependence for e ) ~ 0  of the individual 
functions C,I and C• which predicts that /pol(0)- Ipol(O)) oC 0) 1/2 for suf- 
ficiently small frequencies. (13) 

3'10 -3 ~ "!~, 

2"10-3 C .-C.L " ~  

10_ 3 \ ~  

~c~ 
0 ' ~  " - '  . . . . . . .  5 . . . . . . .  717- - -  to/or 

Fig. 2. Frequency-dependence of the pair-density-correlation functions C,(~o) and C L(Og). 
The full curve is proportional to the depolarized light scattering spectrum obtained from the 
pair-mechanism. 
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Lattice gas models are particularly useful for discussing the motion of 
a test particle, e.g., a tracer atom. The starting master equation has now to 
be generalized somewhat in order to distinguish between the total 
occupation n t of a site ! and the tracer occupation Pt. The motion of the 
tracer is described by the incoherent dynamic structure factor Si=c(q, co), 
defined in terms of the tracer density p(q), 

Sine(q' (0) --N3_oo dt e'~"(p(q, t) p ( - q ,  0 ) )  (2.16) 

As q--* 0, it behaves as 

1 Dtq 2 (2.17) 
Sine(q, (0) ~ (02 zr + (D,q2) 2 

Here D, denotes the tracer diffusion constant, which is usually written in 
the form ~ 

D , =  Do(1 - c ) f , ( c )  (2.18) 

The term D o ( 1 -  c) represents the mean-field diffusion constant. The fact 
that the tracer actually performs a correlated random walk is taken into 
account by the tracer correlation factor f,(c). When the tracer performs a 
jump, it leaves a vacancy behind so that a backward jump is more likely 
than a forward jump, giving f , (c)  <<. 1. 

In order to compute f , (c )  one starts from the equation of motion 
[compare Eq. (2.07)], 

dp,(t) = c~ ~ [p,+ d l -  n,) - p , ( 1  - n,+ n)](t) 
dt 

(2.19) 

which shows the coupling ofpt  to bilinear terms of the form plnr .  Repeated 
differentiation with respect to time leads to an infinite hierarchy of 
equations. Several approximation schemes have been developed in order to 
deal with this problem. (15-18) We shall describe briefly a pair approximation 
which is equivalent to Tahir-Kheli 's treatment in Ref. 17. Within the frame 
of the Mori-Zwanzig method (19) we introduce the infinite set of variables 

Bo(q) = p(q) = ~ pr  e-*qr 
I '  

1 
pr(nr  + , - c )  e -iq', 

B,(q)  = Ec(1 - 8 ) ]  1/2 1, 

(2.20) 

!-r (2.21) 
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with 

(B~(q) I B r ( q ) ) =  6~.,, (2.22) 

using the conventional scalar product notation. Our approximation con- 
sists in projecting the tracer motion on this set of variables, i.e., in 
neglecting the memory function which would contain the influence of 
variables beyond pairs. For the Laplace transform of the tracer density- 
correlation function one arrives at 

Si,c(q, z) = (z" ft, r -  ( Bt L dBt,/dt >,=o)g,~ (2.23) 

where on the right-hand side the ! = l ' =  0 element of the inverse matrix 
( . . . ) -1  is to be taken. This matrix inversion is performed again with the 
aid of the defect matrix method. One finally obtains (iv) 

I   cos0 - (2.24) 
f , ( c ) =  1 ( 2 - c ) ( l + c o s 0  

Here 0 denotes the angle between the orientations of consecutive jump vec- 
tors of the tracer. The quantity cos 0 is an average with respect to the 
single-vacancy problem, which can be treated by random walk theory. At 
c = 1 the exact result f t(1)= (1 + cos 0)/(1 - c o s  0) is recovered from (2.24). 
For intermediate concentration (2.24) agrees very well with Monte Carlo 
data.(2~22) 

The incoherent structure factor at finite q in an fcc lattice has been 
studied by Monte Carlo simulation/=) The line shape is nearly Lorentzian 
with a half-width ( 1 - c )  7(q)f,(q, c). The q-dependent correlation factor 
f,(q, c) can be obtained from the approximation method described 
above. (17) 

2.3. Interacting Lattice Gas 

Most of the work on transport properties of interacting lattice gases is 
based on the assumption of nearest-neighbor interactions. The dc conduc- 
tivity and the tracer correlation factor as a function of both concentration 
and temperature have been studied by means of the path probability 
method (23) and by Monte Carlo calculations. (21) A review of these and 
related results obtained by simulation methods is found in Ref. 24. Proper- 
ties of a current-carrying steady state have also been investigated 
recently. (25) 

In the following we refer to a charged lattice gas with Vt_ r = e2/[! - l'l 
as a more realistic model for ionic conductors. First we have to specify the 
transition rates wta + n(n) in the master equation (2.1). Generally, different 
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choices of rates compatible with the detailed balance condition (2.2) are 
possible, giving different dynamic behavior/26/Therefore, some additional 
physical input is required, when the model is applied to an actual material. 
In our case of Coulomb interactions we assume that the local barrier along 
a bond (! ,1+~) has a contribution proportional to the local electric 
field. (27) This leads to the expression 

w,.,+ ~(n) = wt~ 8(n) exp{fl[-H(n) - H(n')]/2 } (2.25) 

where wt~ is given by (2.4). This form is actually used in many 
investigations. 

A general result for a charged lattice gas consists in the following form 
of the coherent dynamic structure factor in the long-wavelength limit q ~ 0, 

Scoh(q, ~0) 1 S(q) Re[ -i~o + 4~tr(~o)] -1 
7~ 

(2.26) 

with the static structure factor S(q)"~q~/q~, qD = (4rce2~p) m being the 
inverse Debye-Hfickel screening length. The real part of the dynamic con- 
ducticity a(~o) is an increasing function of frequency with the high-fre- 
quency limit a ( ~ ) = e 2 ~ ( w ) / 2 a .  Here ( w )  denotes the equilibrium 
average of (2.25). In contrast to neutral systems the spectrum (2.26) is not 
diffusive, but has a finite width as q ~ 0/28) 

Explicit calculations of the incoherent structure factor have been per- 
formed by mode-coupling techniques/29'3~ At c = 0.5 the tracer correlation 
factor shows a strong decrease near the transition of the lattice gas to a 
superstructure with the wave vector qo = (n/a)(1, 1, 1). This is to be expec- 
ted because the ions surrounding the test particle form a cage which 
becomes more and more "rigid" as the transition is approached. In the 
dilute limit c ~ 0 the tracer correlation factor shows a c 1/2 dependence, in 
analogy to the Debye-Hiickel result for the tracer diffusion constant of the 
one-component plasma. 13x) 

Mode-coupling results for the half-width F(q) of the incoherent struc- 
ture factor are shown in Fig. 3. The lowering of F(q) as compared with the 
mean-field prediction FMv(q)= (w)7(q) /2c  arises from the coupling to 
density-fluctuations which become slow in the vicinity of the critical wave 
vector qo. 

3. FLUIDLIKE M O D E L  

As mentioned in the Introduction, the static properties of AgI-type 
superionic conductors show fluidlike features. This suggests a model where 
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Fig. 3. Quasi-elastic width of the incoherent dynamic structure factor as a function of wave- 
vector q = (rc/a)(~, ~, ~) for a simple cubic charged lattice gas. The parameters chosen are 
c = 0.5 and e2/a kB T= 9. The transition to a superstructure occurs at about e2/a kB T-~ 11. The 
dashed curve shows the width FMv(q) obtained from mean-field theory (after Ref. 30). 

the ionic mot ion  is described as a cont inuous  process. One is therefore lead 
to investigate a system of interacting Brownian  particles subjected to an 
external periodic potential.(6,32 34) The corresponding N-particle 
F o k k e r - P l a n c k  equat ion for the space- and velocity-dependent distr ibution 
function p(rl,..., rN, Vl . . . . .  VN, t) takes the form 

~Pt= iZ --V, Or i mOv-t-y--~vi vi-t m #v,JA p (3.1) 
= 

m denotes the particle mass and 7 the friction constant.  The total force 
Ki = -Ov/Ori  acting on particle i is derived from the potential  

1 1 v, '(r,l V'2'(r,- (3.2/ 

which contains the lattice potential  V (1) originating from the host  ions and 
the pair interaction V (2). 

Two special cases of (3.1) deserve special attention. Fo r  vanishing pair  
interaction one arrives at a single-particle F o k k e r - P l a n c k  equat ion 
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including an external potential. A powerful tool to treat this problem is the 
matrix continued fraction method, (35 37) which yields accurate results for 
the experimentally relevant dynamic correlation functions and also for the 
nonequilibrium response. A second special case consists in setting 
V(l/(r) = 0. The model of a homogeneous Brownian fluid obtained in this 
way is particularly important for understanding the dynamic properties of 
macromolecular solutions. (38~ 

The complete equation (3.1) is applicable to a general situation of 
many-particle diffusion in a periodic medium. Discrete hopping models as 
discussed in Section 2 are contained in (3.1) as the limiting case where the 
single-particle density becomes sharply peaked near the minima of the lat- 
tice potential V(1)(r). 

In the following we shall outline a calculation of the dynamic conduc- 
tivity and discuss its relation to structural properties. The calculation is 
based on mean-field theory. Details will be given elsewhere. (39~ We apply an 
external driving force to our system by adding a term 
-[KeXt(t)/m] ~iOp/~u  i to the right-hand-side of (3.1). For the resulting 
nonequilibrium distribution we make an ansatz (4~ 

N 
P(rl,..., VN, t )=peq(r l  ..... VN) l--I h(r/, vi, t) (3.3) 

i=1 

(3.3) can be interpreted as a local equilibrium approximation. The 
deviation from the equilibrium distribution Peq is given by the action of the 
single-particle field - k e T l o g  h(r, v, t). The function h can be determined 
by requiring consistency with respect to the single-particle distribution 
function p(r, v, t). In the linear response regime this leads to the following 
equation for p(r, v, t): 

@(r, v, t) L[U] p(r, v, t) K~Xt(t) ~3 
cSt - m ~v p~q(r, v) 

1 63Peq(r , V) 6 ~ ( 
-~rjdSr'c(r,r')[p(r ', t ) - P e q ( r  )] (3.4) 

mfl  ~v 

Here Peq(r, V)= const exp(- f lmv2/2)p(r )  is the single-particle distribution 
at equilibrium. The density p(r) is written in terms of an effective potential 
U(r) as 

p(r) = const exp[ -flU(r)] (3.5/ 

L[U] denotes the single-particle Fokker-Planck operator in the presence 
of the effective potential. The last term in (3.4) represents the effect of a 
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time-dependent mean field, determined by the spatial distribution p(r', t )=  
d3v p(r, v, t) and by the direct correlation function c(r, r'). U(r) and c(r, r') 

can in principle be determined from liquid structure theory (4z) although 
this may be a difficult task in practice. Therefore we limit our present dis- 
cussion to some general consequences of (3.4). 

We consider first the stationary case. Here one can show that the 
velocity distribution and therefore the current is not affected by the mean- 
field term in (3.4). As a consequence, the dc conductivity is given by 

o-(co = 0) = Oo[ U] (3.6) 

where a0 denotes the dc conductivity of noninteracting particles in the 
presence of the effective potential U(r). In principle, the right-hand side of 
(3.6) can be evaluated by matrix-continued-fraction techniques, as men- 
tioned before. For a one-dimensional system in the large-damping 
(Smoluchowski) limit the functional dependence o-0[U ] is known 
explicitly, (43) 

fr0[U] = -~  [ - ~  e--'~] -1 (3.7) 

where the bar means a spatial average. 
Equation (3.6) predicts an enhanced conductivity in cases, where the 

barrier Uo of the effective potential is lower than the bare barrier Vo. In 
fact, detailed model calculations for particles in a periodic potential in the 
presence of long-range repulsive forces have shown the existence of incom- 
mensurate situations with a weak density variation, corresponding to a low 
effective barrier Uo ,(44'45) The low activation energy deduced from dc con- 
ductivity data of AgI-type superionic conductors may be interpreted in this 
way. A more quantitative test of the relationship between conductivity and 
structural properties, as implied by (3.6), has been made recently for 
several substances by comparing the magnitude of the activation energy 
with the effective potential derived from the observed Bragg intensities. (46) 

Finally we comment on the qualitative behavior of the ae conductivity. 
The evaluation of the moments of the velocity-correlation function up to 
second order allows us to use the representation 

- m - i c o + R  (3.8) 

The coefficient al contains the effective potential and the direct correlation 
function. It turns out, however, that the effects of interaction largely cancel 
in the expression for al. This gives the estimate al ~- -COo 2, where co o is the 
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resonance frequency of the bare potential V ~1). The coefficient R is deter- 
mined such that (3.6) agrees with (3.8) at ~ = 0. If the damping is not very 
large, (3.8) yields a resonance at the bare frequency ~o0. This is physically 
plausible since we are considering a resonance at zero wave vector, where 
the particles vibrate with the same phase. The expression (3.8) therefore 
interpolates between the regime of diffusion in a renormalized potential at 
low frequencies and a collective vibration in the bare potential at co ~ co o. 
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